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by Melissa Marie Mills 
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ABSTRACT 
 
Granular salt is likely to be used as backfill material and a seal system component within 

geologic salt formations serving as a repository for long-term isolation of nuclear waste. 

Pressure from closure of the surrounding salt formation will promote consolidation of 

granular salt, eventually resulting in properties comparable to native salt. Understanding 

the consolidation processes dependence on stress state, moisture availability, and 

temperature is important for demonstrating sealing functions and long-term repository 

performance.  This study includes the characterization of laboratory-consolidated salt by 

means of microstructural observations, measurement of physical properties related to the 

pore structure, and quantification of pore sizes areas under differing conditions.  Samples 

for this study were obtained from mine-run granular salt from the Waste Isolation Pilot 

Plant (WIPP) and Avery Island which were consolidated hydrostatically with varying 

conditions of stress up to 38 MPa, temperatures up to 250°C, and moisture additions of 

1%.  Porosities achieved from consolidation ranged between 0.01 and 0.22. 

 

Microstructural observations using optical and scanning electron (SEM) microscopes 

were made to provide direct insight into deformation mechanisms during consolidation.  
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Porosity, specific surface area, permeability, and tortuosity factor were quantified 

through multiple techniques including point counting, petrographic image analysis (PIA), 

porosimetry, and steady-state gas permeametry.  Pore area distributions categorized into 

micropores (<1000 µm2) and macropores (>1000 µm2) were developed from Back-

Scattered Electrons (BSE) SEM images analyzed in Fiji. . 

 

Overall, the addition of moisture produces a higher degree of cohesion among grains, 

lower permeabilities and porosities as well as higher specific surface areas and lower 

macropore frequency at higher temperatures. A higher stress was also seen to lower 

porosity, increase specific surface area, and lower the frequency of micropores. Higher 

temperature samples experienced low porosities, more grain boundary cohesion, and, in 

WIPP samples, a higher frequency of macropores in the range from 1000 to 2500 µm2. 

From microstructural observations, samples with 1% added moisture or those which were 

unvented during consolidation demonstrated clear pressure solution processes with 

tightly cohered grain boundaries and areas of occluded fluid pore spaces.  Samples 

consolidated without additional moisture exhibited mainly cataclastic and plastic 

deformation.  Recrystallization was also observed in samples consolidated at 

temperatures of 90°C with added moisture and 250°C. Porosities obtained from methods 

that measured both total and connected porosity were similar, suggesting a connected 

pore network within samples.  From image analysis, a general trend of increase in 

specific surface area with a decrease in porosity was observed. Permeability values 

decreased with decreasing porosity and are comparable to permeability-porosity 

relationships for rock salt published by others.  The tortuosity factor was calculated from 
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the Carman-Kozeny model, which incorporates permeability, porosity, and specific 

surface area, and generally increased with decreasing porosity. Pore area analysis reveals 

porosities consisting predominately of macropores and minor changes in pore area 

frequencies with respect to consolidation conditions.   

 

It is well known that stress, temperature, and moisture affect the behavior of salt 

consolidation, but complete studies on deformation mechanisms and the evolving pore 

structure over a large range of conditions is not abundant. Information provided here 

enhances the current understanding of granular salt consolidation by offering direct 

insight into micro-mechanic processes and transformation of pore structure components. 
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1. INTRODUCTION 

1.1. BACKGROUND 

Rock salt is a viable geologic repository host for disposal of waste from nuclear energy 

and nuclear weapon by-products, due to its location in stable geologic areas, plastic 

material behavior, and low permeability (Winterle et al., 2012).  Disposal in rock salt is 

being used and/or considered at numerous locations throughout the world such as the 

Waste Isolation Pilot Plant (WIPP) in the USA, and the Asse II and Morsleben mines in 

Germany.  After waste has been placed, granular salt is likely to be used as back-fill 

material for mined tunnels and shafts to completely encase waste. It is expected that 

granular salt will eventually consolidate to a condition comparable to the host rock, 

which is why understanding deformation mechanisms and pore structure evolution as 

granular salt consolidates is key for determining long-term repository performance for 

complete isolation.   

 

Consolidation is essentially pore volume reduction, where the amount and nature of the 

final pore volume is dependent on a multitude of factors.  Consolidation of granular salt 

is mainly a function of stress, temperature, and moisture conditions, but also time and 

impurity (e.g., clay) amounts.  As granular salt consolidates, the initial void reduction is 

due to brittle processes of grain rearrangement and cataclastic flow.  Eventually, grain 

boundary processes and crystal-plastic mechanisms, which include deformation 

mechanisms, control additional porosity reduction. Deformation mechanisms that occur 
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simultaneously with increasing temperature and stress include dislocation multiplication, 

glide, cross slip, climb, fluid-assisted creep, and annealing/recrystallization.  

 

Deformation mechanisms have been widely studied through microstructural observations 

by a variety of authors (e.g. Urai et al., 1986a, 1986b; Spiers and Brzesowsky, 1993; 

Hansen et al., 2012; Broome et al., 2014).  Dislocations are defects in a crystal structure, 

where any applied stress immediately increases dislocation densities making dislocation 

multiplication a preliminary, transient deformation mechanism observed in natural rock 

salt by Carter et al. (1982), Urai et al. (1986), and Hunsche and Hampel (1999), among 

others.  This process creates a lattice distortion leading to strain hardening from 

obstructed movement when other mechanisms are unable to transport dislocations.  The 

movement of dislocations can occur by glide, a plastic deformation process, also known 

as slip in material science terms.  With glide, dislocations move along a family of 

crystallographic planes with shear stresses that exceed the critical resolved shear stress. 

This movement produces glide bands, which highlight primary slip systems in minerals 

(Carter and Heard, 1970).  When barriers exist in the crystal lattice, glide is aided by the 

dynamic recovery processes of cross slip and climb, as seen by Senseny et al. (1992).  

Cross slip is apparent at low temperatures and involves screw dislocation movements 

from one glide plane to another with the same Burger’s vector.  In another direction, 

climb occurs as dislocations move perpendicular to the glide plane at higher 

temperatures.  When rock salt includes small amounts of moisture, solution precipitation 

processes, such as fluid-assisted creep, help reduce dislocation densities and influence 

grain boundary migration leading to recrystallization (Urai and Spiers, 2007). Fluid-



www.manaraa.com

 3 

assisted creep, or the more commonly identified earth science term pressure solution, 

comprises of the transfer of fluid along grain boundaries where portions of highly 

stressed grains dissolve owing to increased solubility and precipitate at lower stress 

interfaces.  Fluid-assisted migration is capable of removing stored energy even at ambient 

temperatures and therefore noticeably accelerates the densification of granular salt 

(Spiers et al., 1990; Callahan et al, 1996, 1998).  Annealing/recrystallization is the 

ultimate recovery process that is thermally activated and involves strain softening when 

work-hardening processes are unbalanced.  Recrystallization has been rarely observed in 

rock salt consolidation experiments (Carter et al., 1982; Urai et al., 1986b, Hansen et al., 

2012) because of the limited test duration and conditions (e.g., temperature, added 

moisture, etc.), and/or excluded observational work altogether.   Recrystallization has 

been more frequently observed in naturally deformed salt studies (Debois et al., 2010; 

Schleder and Urai, 2005)  

 

A small change in temperature, stress, or moisture availability during consolidation can 

greatly influence the deformation mechanisms that take place. Rock salt consolidated at 

lower temperatures with dry conditions at high stresses tends to experience mainly 

cataclastic fracture processes or grain sliding, evident by dislocation multiplication and 

glide mechanisms.  Broome et al. (2014) observed that at higher temperatures, effective 

porosity is lowered and extensive glide enables grain deformation along with thermally 

activated climb recovery. This led to fluid inclusions moving to grain boundaries where 

consolidation continues by plasticity-aided pressure solution processes. Added moisture 

in synthetic salt has shown rapid recrystallization at grain boundaries from fluid-assisted 



www.manaraa.com

 4 

creep (Urai and Spiers, 2007); however, there have been few (e.g., Urai et al., 1986b; 

Brodsky et al., 1996) microstructural observations on consolidation of natural granular 

rock salt with an amount of water added consistent with field operational plans; that is, 

less than saturated.   

 

Understanding the evolving pore structure under different consolidation conditions is 

critical for assessing how transport properties will change.  Of particular interest are the 

conditions that lead to a very low permeability when the granular salt will become an 

effective seal material.  The pore structure in consolidating granular salt can be 

characterized by its amount (porosity), distribution of pore areas, and connectivity. Keller 

et al. (2014) examined the macro (radii > 4 μm) and micro-pores (radii < 1 μm) of 

oedometer tested crushed rock salt with different degrees of compaction at temperatures 

of 100°C and 200°C. Their pore space dimensions were defined by incompatibilities 

between angular grains and grain aggregates. By using X-ray computer tomography and 

Focused Ion Beam nanotomography, 3D reconstructions were evaluated for 

homogeneity, percolation properties, pore size distribution, and connectivity of the pore 

space. It was found that the 200°C sample had lower porosity, connectivity, macro-

porosity, average pore size radii, and a higher percolation threshold (0.08-0.14) in terms 

of macro-porosity when compared to the 100°C sample. It was also found that the 

micropores mainly lie along grain boundaries with poor connectivity and are related to 

fluid inclusion formation based on their pore geometry.   

 



www.manaraa.com

 5 

Pore structure can also be significantly influenced by the availability of moisture as 

summarized in Hansen et al. (2014).  The topology of fluid in granular salt is controlled 

by the dihedral angle θ, which is a balance of solid-solid and solid-fluid interfacial 

energies, and allows for an interconnected network of fluid at triple grain boundaries 

when less than 60°.   When greater than 60°, fluid is restricted to isolated pores along 

grain boundaries and/or triple junctions.  As granular salt is consolidated, the main pore 

space fluid is compressed and forced out of the consolidating mass until there is little 

connected porosity.  At this stage, the saturation of the intergranular pore space increases 

and further fluid transport involves two-phase flow of trapped air and brine. 

 

While there are many experimental methods to acquire pore characteristics, petrographic 

image analysis (PIA) is a rapid way to quantify petrophysical properties. PIA analyzes 

microscopic images from rock thin sections ascertain quantitative measurements of 

porosity, pore shape, area, and specific surface area. From this technique, two-

dimensional parameters are obtained and used to describe three-dimensional properties of 

porous media (Mowers and Budd, 1996).  Cerepi et al. (2001) used PIA to quantify the 

pore space of carbonate rocks by segmented, binary images from backscatter scanning 

electron (BSE) and optical microscopes. The pore space was divided into macro and 

micro porosity where petrophysical image parameters based on stereologic principles 

were used to find image porosity, specific surface area, and pore throat size relating to 

capillary pressure.  When compared to classic petrophysical methods such as mercury 

injection porosimetry, it was found that image porosity and surface area were lower than 

mercury injection techniques. They found this to be because of their image analysis 
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techniques, which could only measure pore throat sizes of 0.03 µm and greater, whereas 

pore sizes as small as 0.005 µm were resolved with mercury injection.  Mowers and Budd 

(1996) found that micropores unresolved by PIA did not greatly influence permeability.  

 

A principal consequence of a pore volume reduction by consolidation is a decrease in 

permeability.  Permeability measurements have been made on granular and synthetic salt 

under a variety of stress, temperature, and moisture conditions (Holcomb and Shields, 

1987; Case et al., 1987; Brodsky, 1994; Cinar et al., 2006; Stührenberg and Schulze, 

2012; Bauer et al., 2015).  Results have been previously described by a power-law, i.e., k 

~φx, with an exponent in the 4 to 5 range (Cinar, 2006; Blanco Martin et al., 2015; 

Hansen et al., 2015).  At low porosities (<0.05), there is an indication that the 

permeability decreases at an accelerated rate with respect to porosity.   Stormont et al. 

(2015) suggested the permeability-porosity behavior of granular salt was similar to that 

which has been observed for other materials, including calcite, quartz, and sandstone 

(e.g., Zhu et al., 1995).  Above some critical porosity, the porosity remains largely 

connected and involved in the flow and can be described by a power law relation.  Below 

the critical porosity, which has been estimated in the range of 0.02 and 0.05 (Stormont et 

al., 2015), pore connectivity is progressively lost and the permeability decrease 

accelerates.  Eventually, below a percolation threshold, any remaining pores become 

completely isolated and there is no measureable permeability.     

 

An important observation from previous permeability studies is the role of water in 

reducing the permeability of granular salt.  Brodsky (1994) found that even at a relatively 



www.manaraa.com

 7 

low confining pressure (6.9 MPa) and temperature (25°C), samples with added moisture 

(3% by weight and saturated) consolidated to high fractional densities (>0.90) yielding 

permeabilities below 6 x 10-18 m2.  Stührenberg and Schulze (2012) also concluded that 

wet consolidation conditions greatly reduce permeability: at modest consolidation 

conditions (20 MPa and 22°C), the permeability of consolidated salt was less than 1 x 10-

20 m2, whereas at dry conditions, consolidation at elevated conditions (38 MPa and 

100°C) only reduced the permeability to 1 x 10-16 m2.   Popp et al. (2013) demonstrated 

that when consolidation involves pressure solution mechanism due to available moisture, 

the permeability is lower than comparable deformation by other mechanisms.  These 

results indicate that the pressure solution mechanism effectively reduces the conductivity 

of the pore structure along grain boundaries and contacts.  Cinar et al. (2006) noted that 

adding too much water may be problematic as saturated conditions can increase pore 

pressure, which decreases effective consolidation stresses, and may result in a relatively 

large residual porosity and permeability. 

 

Consolidation of natural granular rock salt has been widely studied (Holcomb and 

Shields, 1987; Case et al., 1987; Brodsky, 1994; Hunsche and Hampel, 1999; 

Stührenberg and Schulze, 2012; Bauer et al., 2015) with the main focus on mechanical 

responses and some microstructural observations, but limited emphasis on pressure 

solution processes and pore structure parameters (e.g., specific surface area, pore size, 

tortuosity, etc.).  Pressure solution processes and pore structure parameters have primarily 

been investigated by consolidation or compaction experiments on synthetic salt, such as 

table salt or analytical grade NaCl granulates, used as a reference material to natural 
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granular rock salt (Spiers and Brzesowsky, 1993; Cinar et al., 2006; Urai and Spiers, 

2007; Pennock et al., 2007; Zhu et al., 2015).  For instance, Spiers and Brzesowsky 

(1993) studied dry and brine-saturated NaCl granulates under conditions of axial stresses 

up to 8MPa and ambient temperature, resulting in porosities between 0.17 and 0.3. They 

observed clear evidence of densification by pressure solution processes and lower 

porosities in brine-saturated samples. Cinar et al. (2006) also consolidated NaCl 

granulates at ambient temperature, but higher stresses from 50 to 150 MPa and an added 

water content of 0.3%, obtaining porosities from 0.025 to 0.05. While values for pore 

throat radius, specific surface area, and tortuosity were found, no microstructural 

observations were made. Image analysis methods were studied in Zhu et al. (2015) on 

small compacted table salt samples to examine the evolution of porosity by measuring the 

change in position of void centroids over time. Conditions were focused for stresses up to 

0.5 MPa at ambient temperatures and dry conditions (restricting pressure solution 

processes) and an average porosity of 0.18 was reported on one sample image divided 

into six sections after 92 days. 

 

1.2. OBJECTIVES 

Although the experiments presented here provide insight into the behavior of salt during 

consolidation, the incorporation of micro-mechanic observations together with 

petrophysical measurements and pore structure characterization of natural granular salt at 

low porosities have not been established.  A principal objective of this work is to 

document the relationship between deformation mechanisms that occur in granular salt 

and the varying consolidation conditions. Pressure solution processes are emphasized due 
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to the significant effects on reducing stored energy within grains, which in turn enhances 

densification and lowers permeability. Another objective of this work is to quantify how 

pore structure changes with consolidation under different conditions through 

measurement of physical properties and image analyses of pores.  Permeability 

measurements are used to relate the transport properties and pore structure of granular 

salt.  An important application of this work may be in informing the development and 

parameterization of constitutive models for granular salt consolidation.  

  



www.manaraa.com

 10 

2. MATERIALS AND METHODS 

2.1.  CONSOLIDATION EXPERIMENTS 

Mine-run granular salt from WIPP, located in a bedded salt formation, and the Avery 

Island mine, located in a domal salt formation, was consolidated in laboratory hydrostatic 

creep tests with temperatures up to 250°C and confining pressures up to 38 MPa, shown 

in Table 1.  The granular salt was screened to exclude particles larger than 9.5 mm and 

dried at 110°C.  To produce material for wetted samples, granular salt was spread out in 

trays in a single layer and exposed to 100% humidity conditions until 1% moisture 

content by weight was achieved.  Domal formations can have arguably up to 1% natural 

water content, where bedded can contain up to 3-5% depending on impurity contents 

(Hunsche and Schulze, 2002; Kuhlmann, 2014). Cylindrical samples (Figure 1), 

nominally 105 mm diameter and 122 mm tall, were created by placing the prepared 

granular salt into copper and malleable soldered lead tubes fitted with end caps.  The 

jacketed samples, which had an initial porosity of about 0.30, were placed in a pressure 

vessel within a load frame.  Band heaters on the pressure vessel were used to achieve and 

maintain the test temperature.   Hydrostatic stresses on the sample were generated by 

pressurizing the hydraulic oil in the pressure vessel.  Stress and strain were monitored 

during consolidation by monitoring axial displacement with LVDTs, lateral 

displacements with Schuler gages, and confining fluid volume and pressure.  In some 

tests, concurrent gas permeability measurements were made during consolidation.  Test 

durations ranged from a few days to a few months.  Final fractional densities were 

between .9 and 1.0.   A more complete description of the consolidation tests can be found 

in Bauer et al. (2015) and Broome et al. (2014).  At the conclusion of the consolidation 
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test, sub-samples derived from the consolidated samples were subjected to permeability 

and porosity measurements, thermal properties measurements, and microstructural 

observations.  

Table 1: Consolidated samples with associated conditions. In sample names, “W” represents 
WIPP salt and “A” represents Avery Island salt, where 90, 175, and 250 are respective 

temperatures in °C. *Preconsolidated implies only confining pressure applied without contact 
from an axial piston.     

Sample 
Name 

Temperature 
(°C) 

Hydrostatic 
Stress 
(MPa) 

Moisture 
Added 

Elapsed 
Consolidation  
Time (Days) 

W90-1 90 20 None 111 
W90-2 90 20 1% 16 

W90-3 90 20 1% 1 
(Preconsolidated*) 

W90-4 90 20 1% 5 
W90-7 90 20 1% 23 
W90-8 90 38 None 8 

W175-1 175 20 None 3 
W250-1 250 20 None 14 

W250-2 250 20 None, 
Unvented 12 

A250-1 250 20 No 7 
A250-2 250 20 1% 7 

 

 

Figure 1: a. Example of sample assemblage for consolidation.  b.  Sample after consolidation. 

 
 
 

a. b. 
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2.2. MICROSCOPIC OBSERVATIONAL METHODS 

Observational techniques were used on consolidated and in-situ samples to gain insight 

into deformation mechanisms and resulting pore structure.  In order to perform numerous 

types of observations, multiple samples were produced from both deformed and native 

salt. They comprise of polished thick petrographic sections, cleavage chips, and freshly 

broken surfaces.  Ends of consolidated samples were cut with a diamond wire saw to 

minimize damage and create sub-samples.  A number of sub-samples were commercially 

vacuum impregnated with blue stained RF 1366 resin and thin sectioned, while others 

were vacuum impregnated with rhodamine-B doped Spurr Low-Viscosity resin and cut 

using a Buehler IsoMet slow speed saw.  Fresh aggregate fragments were carefully 

broken from sub-samples by hand to expose clean surfaces that exhibit sample 

cohesiveness, grain boundary characteristics, and other evidence of micro-processes.  

Observational devices include optical and scanning electron microscopes (SEM). A Leitz 

Ortholux II optical microscope equipped with a Leica camera and Leica Application 

Suite software was used to examine unetched/etched cleaved chips and thin sections, 

point count, and capture images. Three SEM’s (JEOL 5800LV, FEI Nova 200 Nanolab, 

Tescan Vega3 LM) were used to view Au-Pd coated etched thin sections, etched cleavage 

chips, and freshly broken aggregate surfaces.  Etching highlights grain microstructure and 

is completed using a solution of methanol saturated with PbCl2 as the etchant followed by 

transferring to butanol to stop the etch.  Point counting on thin sections is a standard 

technique of optical microscopy and was done to manually determine the porosity of a 

sample. This consists of counting the number of void spaces and solid spaces in a grid-

like pattern for a minimum of 300 counts.   
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2.3. IMAGE ANALYSIS 

The open software package Fiji (Schindelin et al., 2012) was used to process images and 

develop pore area distributions. Thin sections were imaged under BSE-SEM in wide field 

view at resolutions down to 0.37 μm/pixel to capture pore structure for processing in Fiji. 

An example of the process is given in Figure 2. The threshold of each image was adjusted 

to contrast pore space (white) and grains (black), which was then analyzed by the Analyze 

Particle function in Fiji, omitting pixel areas less than 10 μm2 to reduce noisy results.   

 

Figure 2: a. Original BSE-SEM image. b. Threshold of image adjusted with white pore space and 
black grain space. c. Generated outline of counted pores after particles were analyzed. 

 
Four images were taken at different locations from each sample thin section to process in 

Fiji. Pore area and perimeter were obtained from analysis, and used to calculate porosity 

(ϕ), specific surface area (SA), and pore area distributions. For image porosity, resulting 

pore area was summed and divided by the image area.  Specific surface area was 

calculated by the following relationship (Cerepi et al., 2001):  

𝑆𝐴 = 	
4 𝑃'(

')*

𝜋 𝐴'(
')*

								(1) 

a. b. c. 
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where Pi is the perimeter of pore i, Ai is the area of pore i, and n is the total number of 

analyzed pores. This relationship assumes the projection of a convex shape (Underwood, 

1980). To confirm the accuracy of four images, ten images were taken in a grid-like 

pattern on one sample, and measurements of porosity and specific surface area were 

obtained. The porosity and specific surface area derived from ten images were within 7% 

and 5% of the porosity and specific surface area, respectively, derived from four images.   

 

2.4. SUB-CORE PERMEABILITY MEASUREMENTS 

Cylindrical ends were cored to obtain 25.4 mm diameter sub-samples used for porosity 

and permeability measurements.  Sub-cores were jacketed in a UV cure coating with 

appropriate end caps and placed into a silicon oil confining pressure vessel.  A confining 

pressure of 0.689 MPa (100 psi) was applied.  By means of the gas lines that penetrated 

the pressure vessel and connected to the end caps, pressurized nitrogen was supplied to 

one end of the sample while the other end vented to atmospheric pressure.   The flowrate 

was measured with flowmeters that were calibrated to acquire flowrates from 0.5 to 4000 

standard cubic centimeters per minute.  Three upstream pressures of 0.138, 0.241, and 

0.345 MPa (20, 35, and 50 psi) were used for each sub-core.  After a constant flowrate 

developed at each pressure, as indicated by a change of less than 5%, flow continued for 

at least fifteen minutes, where a data point was collected every minute.  Permeability k 

was calculated by the following: 

𝑘 =
2𝑞𝜇𝐿
𝐴

𝑃4
𝑃5 − 𝑃45

							(2) 

where q is the flow rate (standard volumetric flow), A is the sample cross sectional area, 

L is the sample length, μ is the gas viscosity, Pa is atmospheric pressure, and P is the inlet 
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pressure. The interpreted permeability obtained at the three upstream pressures were used 

to derive the gas slip or Klinkenberg correction (Peters, 2012). This correction consisted 

of plotting calculated permeability values vs the inverse mean pore pressure with a best 

fit line, where the intercept is the intrinsic gas permeability at infinite pressure.   
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3. RESULTS AND DISCUSSION 

3.1 DEFORMATION MECHANISMS 

Thin sections and broken aggregate samples expose deformation mechanisms taking 

place during consolidation experiments varying in pressure, temperature, and moisture 

conditions. Photomicrographs from freshly broken aggregate pieces examined under the 

SEM are shown in Figure 3. In can be seen that samples without added 1% moisture at 

temperatures of 90°C and 175°C (a.-c.) have copious amounts of mechanically ground 

surfaces and plastic processes occurring.  Figures 3a. and b. were imaged at a 

magnification of 500x and show mainly abraded surfaces with evidence of some pore 

space. Figure 3c. is a high magnification (1,300x) photomicrograph of a sample 

consolidated at a higher temperature.  In this image, plastic deformation is observed with 

the lower grain pushing up against the upper grain, generating stresses and causing the 

crystal (110) dodecahedron planes within the upper grain to distort (see annotations). 

 

Samples with 1% added moisture (Figure 3d.-k. and p.) appear to have a higher level of 

cohesion at grain boundaries resulting in more cleaved surfaces, which are created by 

breaking through the crystal structure, and more instances of pressure solution processes.  

Figures 3e., f., i., j., and k. are all examples of pressure solution processes occurring at 

grain boundaries.  They reveal rounded cubic grains creating a sharp, yet cohered 

deformation within adjacent grains. Figure 3k. shows ubiquitous rounded cubic grains, 

indicating pressure solution, with multiple grain boundaries that are tightly cohesive.  The 

only evident void space is represented by isolated and occluded fluid pore spaces found 

along grain boundaries (noted with arrows). These inhomogeneous features, formed 



www.manaraa.com

 17 

during deformation, were found among the 1% added moisture and unvented samples 

displayed prominently in Figures 3d., g., h., m., and n.  Between magnifications of 500x 

to 1,500x, arrays of droplets and canals of residual moisture are apparent along grain 

boundaries. Similar results were found on deformed Asse mine samples in Urai et al.  

(1986b) and on WIPP salt with 1% added moisture in Brodsky et al. (1996).  The 

unvented sample, W250-2 (Figure 3m. and n.), retained all natural moisture creating 

isolated and occluded fluid pore space while promoting fluid aided processes and 

achieving a high degree of consolidation. However, the vented sample with the same 

consolidation parameters (W250-1), also experienced a high degree of consolidation 

evident by tight grain boundaries and cleaved surfaces even when steam, from natural 

fluid, was observed escaping the sample during consolidation.  These results suggest that 

consolidation at 250°C proceeds relatively rapidly whether or not there was additional 

moisture.  Figure 3o. is a natural Avery Island sample without 1% moisture added 

showing an evidently tight grain boundary, but mainly abraded surfaces, implying the 

grains were not completely fused together. A sample with 1% added moisture (Figure 

3p.), a cleaved grain surface is observed on the upper grain, indicating a break through 

the crystal structure and more cohesion at the grain boundary. 
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a. W90-1  

b. W90-8 

 
c. W175-1 

 
d. W90-2 
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e. W90-2 
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i. W90-7  

j. W90-7 

 
k. W90-7 

 
l. W250-1 

Pressure solutioning Grain 1 
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Pressure solutioning 
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m. W250-2 

 
n. W250-2 

 
o. A250-1 

 
p. A250-2 

Figure 3: SEM photomicrographs of mechanically broken aggregate pieces. a. W90-1: Evidence 
of porous spaces and mainly abraded surfaces under (500x magnification). b. W90-8: Grain 

boundaries with minute cohesion and rough, abraded surfaces (1,470x magnification). c. W175-1: 
Upper grain being plastically deformed by pressure of lower grain shown by curved 110 planes, 

(1,300x magnification). d. W90-2: Occluded fluid pores at center along grain boundaries and 
smooth, cleaved surfaces (1,000x magnification). e. W90-2: Cleaved surfaces with evidence of 
pressure solution by cubic grain in center protruding onto adjacent grain and tight cohered grain 
boundaries (800x magnification). f. W90-4: Evidence of pressure solution processes by upper 

deformed grain in center and traces of fluid inclusions on lower grain ridge (750x magnification). 
g. W90-4: Array of fluid canals and pore space imprinted on grain boundary surface (750x 

magnification). h. W90-7: Area of occluded fluid pore spaces at center surrounded by smoothed 
grain boundaries and cleaved faces (900x magnification). i. W90-7: Evidence of pressure solution 
in center by large grain deformation, surrounded by distorted grains from glide on <110> (650x 

magnification). j. W90-7: Smooth cubic grain at center with tight cohesion along grain 

Grain 1 

Grain 2 

Grain 3 

Occluded fluid pores 

Grain 1 
Grain 2 

Grain boundary 

Grain 1 

Grain 2 

Grain boundary 

Cleaved surface 
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boundaries with traces of pressure solutioning (333x magnification).  k. W90-7: Ubiquitous 
amount of pressure solution processes indicated by smooth cubic grains and tightly cohered grain 

boundaries (1,000x magnification). l. W250-1: Intersection of grains at near orthogonal 
orientation with tight grain boundary achieved by crystal plasticity (225x magnification). m. 

W250-2: Tight triple junction with canals of resided moisture displaying occluded pores (1,500x 
magnification). n. W250-2: Occluded fluid droplets and canals on cubic grain boundary (500x 

magnification). o. A250-1: Evidently tight grain boundary, but not high cohesion (251x 
magnification). p. A250-2: Upper grain fractured through the crystal structure while lower grain 

fractured on boundary and minor residual porosity (100x magnification). 

 

Etched thin sections were imaged under a reflected and transmitted light optical 

microscope and are displayed in Figure 4. Figure 4a. and b. display a grain from a sample 

consolidated at 90°C without added moisture (W90-1). The grain exhibits a complex 

substructure showing bands of elongated subgrains (Figure 4a.), along with larger 

polygonized subgrains seen in the upper portion of Figure 4b. (denoted by X).  While a 

similar structure is seen in the grain in Figure 4c., (W90-2 added moisture), there also 

appears to be areas of recrystallization evident by the highly deformed, clear subgrains in 

Figure 4d. This result is consistent with the presence of fluid along grain boundaries 

increasing grain boundary migration which lowers dislocation densities and promotes 

recrystallization.  Although this recrystallized substructure is comparable to grains in 

Figure 4f., which is the unvented WIPP 250°C sample, it is not as widespread.  At higher 

temperatures of 250°C, shown in Figure 4e.-h., samples experience much larger areas of 

recrystallization, with subgrain free areas (denoted by X’s) surrounded by smaller 

subgrains throughout the crystal structure.  Similar features of recrystallization on 

deformed Asse mine salt samples were observed in Urai et al. (1986b), consolidated at 

150°C, 10 MPa, and an unknown amount of added brine. 
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g. A250-1 

 
h. A250-2 

Figure 4. Etched thin section images under reflected and transmitted light microscope. a. W90-1: 
Grain with bands of elongated subgrains (20x magnification). b. W90-1: Lower magnification of 

grain revealing large polygonized subgrains on top of elongated subgrain bands (10x 
magnification). c. W90-2: Center grain with small subgrain structure with come evidence of 

recrystallization (20x magnification). d. W90-2: Center grain with deformed subgrain structure 
indicating recrystallization (10x magnification). e. W250-1: Large recrystallized area at center as 

well as high-energy grain boundaries (10x magnification). f. W250-2: Simultaneous 
recrystallization, internal grain recovery, and high energy grain boundaries (10x magnification). 
g. A250-1: Triple-junction grain boundary with recrystallized area in center and small subgrains 

decorating tight grain boundaries (10x magnification). h. A250-2: Remaining amount of subgrain 
structure within grain surrounded by encroaching recrystallizing area (10x magnification).  

 

Photomicrograph results of samples with added moisture are significant because they 

show that a small amount of moisture added to granular salt enhances the level of fused 

grain boundaries and pressure solution processes, which have been primarily seen in 

experiments with synthetic salt. Proof of recrystallization is also significant and was 

somewhat unexpected since it is mainly seen in naturally deformed rock salt. 

Observations of recrystallization in these samples suggest that the consolidation 

conditions produced similar responses similar to those that occur in fully consolidated, 

natural salt deposits.  An unexpected feature was also the occluded fluid pore spaces 

found in the unvented and added moisture samples.   

X 

X X 
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3.2.PORE STRUCTURE RELATED PROPERTIES 

3.2.1. POROSITY 

Porosity measurements were obtained using four different methods and two sample types, 

and are displayed in Figure 5. Dimensional techniques and porosimeter testing were both 

made on the same sub-cored samples with a diameter of 25.4 mm and height of 12.7 mm 

evaluated by Paneru (2016). Dimensional techniques use an assumed salt grain density of 

2.16 g/cc along with weight and volume measurements to calculate porosity.  Porosimeter 

measurements involve helium gas expansion within a calibrated reservoir. Impregnated 

sample thin sections, described in Section 2, were used for point counting and image 

analysis.  Overall, there is a general agreement between methods, and connected and total 

porosity are nearly the same. The image analysis method results were equal to or higher 

than point counting for all samples.  This discrepancy could be due to the varying BSE-

SEM gray scale readings from impurities (clay, anhydrite, etc.).  The samples are 

heterogeneous, yielding a different amount of impurities and grains at each imaged 

location on a thin section.  Thus, depending on the concentration and backscatter 

intensity, impurities could be included in the pore threshold, thereby increasing pore area 

values during image analysis calculations.  In some instances, the porosimeter and 

dimensional technique values are higher than point counting and image analysis.  One 

reason may be minor damages acquired from coring, which could create small cracks or 

expand existing pore space in samples without added water (W90-1, W90-8, and W175-

1) and only preconsolidated (W90-3) because of less cohesive grain boundaries. Another 

reason may be due to some missed pores in the microscopic methods and/or assumptions 

in converting 2D to 3D measurements bias the results. 
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Considering specific samples at the same stress state, 90°C consolidated samples with 

added moisture (W90-2, W90-4, and W90-7) do experience lower porosities compared to 

W90-1, which had no moisture added, but a much longer test duration of 111 days. W90-

3 is not included because it was only pre-consolidated, which means it was only 

subjected to hydrostatic stress for approximately 15 minutes.  The one sample 

consolidated at a higher stress state of 38 MPa, W90-8, did have a lower porosity than a 

sample with similar conditions, W90-1, even when W90-8 had a short test duration. At 

250°C, WIPP samples have similar porosities regardless of vented or unvented 

conditions. However, the Avery Island sample with added moisture (A250-2) yields 0.01 

to 0.02 less porosity compared to a sample without added moisture (A250-1) 

consolidated for about the same duration. 

 
Figure 5: Comparison of sample porosity values from porosimeter, dimensional techniques, point 

counting, and image analysis methods. 
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3.2.2. SPECIFIC SURFACE AREA 

Figure 6 shows specific surface area vs porosity with samples grouped by consolidation 

temperature. Samples with 1% moisture added are indicated in blue, while no added 

moisture samples are red.  Specific surface area values are quite variable near or below 

0.05 porosity, but there is a possible trend of increasing specific surface area as porosity 

decreases.  This trend is expected given the relationship used to calculate specific surface 

area (equation 1), where samples with smaller porosities have smaller pore areas, but 

relatively greater perimeters and thus larger specific surface areas.  Taking all samples 

into account, there is no clear indication that stress, temperature, and/or moisture 

conditions during consolidation have a direct effect on specific surface area. However, 

when comparing two similar samples, some influence can be seen. For instance, a higher 

consolidation stress (W90-8) in a shorter amount of time results in a higher specific 

surface area than a lower stress (W90-1) for longer periods. Also, the addition of 

moisture in the Avery Island sample also produces a higher specific surface area than 

without added moisture, while other conditions remained constant.  These trends are 

expected because a higher stress state and addition of moisture enhances consolidation 

which produces a lower porosity thereby increasing specific surface area. 

 

The box area is a range of specific surface area and porosity values obtained by Cinar et 

al. (2006) from experiments on compacted NaCl granulates. When compared to Cinar et 

al. (2006), the values of this study are larger.  Cinar et al. (2006) did not use stereological 

relationships with petrographic image analysis, but obtained specific surface area using 

an areameter based on nitrogen adsorption, which could account for dissimilar values.  
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Other studies that used petrographic image analysis to acquire specific surface area for 

other types of geologic mediums include Cerepi et al (2001) and Mowers and Budd 

(1996).  Cerepi et al (2001) analyzed carbonate limestones with variable mud to grain 

matrixes, where porosity ranged from 0.09 to 0.36 and specific surface area from 1400 

mm-1 to 2500 mm-1.  Mowers and Budd (1996) obtained specific surface area values from 

100 mm-1 to 500 mm-1 for porosities from 0.05 to 0.28 on dolomite samples. Resulting 

higher specific surface area values could also be indicative of included impurities in 

natural rock salt. The addition of moisture to samples has little apparent effect on specific 

surface area determinations. 

 

Figure 6: Comparison of specific surface area and porosity values, measured by microscopic 
techniques, for all samples categorized by temperature (shapes) and moisture addition (color).  

Range of data from Cinar et al. (2006) is also displayed.  
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3.2.3. PERMEABILITY 

The permeabilities from four sub-cores are plotted on Figure 6 as a function of the 

porosity previously measured on the same sub-cores by Paneru (2016).  The permeability 

values are corrected for gas slip.  The permeabilities indicate a trend of decreasing 

permeability with decreasing porosity.  Consistent with the concept that moisture 

enhances consolidation thus lowering porosity, samples with the addition of moisture 

(W90-4 and W90-7) experience a lower permeability than those without (W90-8 and 

W175-1).  The difference in permeability between W90-4 and W90-7 is likely 

attributable to their test durations, which were 5 and 23 days, respectively.  There are 

insufficient data to evaluate whether the permeability of a sample consolidated with 

additional moisture was lower than that of a sample consolidated to a comparable 

porosity but without additional moisture.  Amongst the samples tested, permeability is 

shown to be impartial to consolidation conditions with respect to temperature and stress 

state. 

 

Also shown in this figure are permeability-porosity relationships for granular salt based 

on experiments by Cinar et al. (2006) and Blanco Martin et al. (2015).  The permeability 

of W90-8 is significantly greater than the other samples and is outside the range of 

displayed permeability-porosity relationships.  There is concern that these small sub-

cores may be damaged during coring, which could dramatically increase the 

permeability.  
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Figure 7: Permeability and porosity of selected sub-core samples, and relationship equations 
from Cinar et al. (2006) and Blanco Martin et al. (2015).  

 

3.2.4. TORTUOSITY 

Tortuosity is the ratio of the length of a streamline between two points in a porous 

medium divided by straight-line distance between the points.  With this definition, 

tortuosity has a minimum value of one for linear flow through a porous medium.  The 

square of this ratio is referred to as the tortuosity factor in some literature and is the term 

used herein.   

 

The Carman-Kozeny permeability model was used to interpret the tortuosity factor (τ) 

based on permeability, porosity, and specific SA measurements made. The relationship is 

given by:  

𝜏 =
1

𝑐 ∙ 𝑘 ∙ 𝑆𝐴5
𝜙;

1 − 𝜙 5 										(3) 

where c is the shape factor, generally taken as 2.5 (Cinar et al., 2006).  
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The tortuosity factor is shown versus porosity obtained from the porosimeter in Figure 8.  

As porosity decreases, the tortuosity factor increases which is consistent with trends 

observed and predicted for other porous media (e.g., Pisani, 2011). This result suggests a 

more convoluted pore structure in samples with added water, generating a longer traveled 

distance.  However, the calculated tortuosity values of less than one are inconsistent with 

the definition of tortuosity factor.  Although, it is important to note that the tortuosity is a 

parameter of a one-dimensional model and not a property of a porous medium (Dullien, 

1991).  Dullien (1991) shows how non-uniformities in the pore structure can significantly 

alter the interpreted permeability (or tortuosity) with the Carman-Kozeny model. 

 

Figure 8: The tortuosity factor versus porosity for selected sub-core samples. 
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3.3.  PORE AREA DISTRIBUTIONS 

Pore areas from image analysis were separated by size due to the large range of pore 

areas data obtained.  Pore areas were separated into two groups: micro and macro pore 

areas.  This approach has been used by others (e.g., De Las Cuevas, 1997; Cerepi, 2001) 

when confronted with a very large range of pore dimensions.  The measured pore areas 

ranged from 1.46 x 101  to 1.96 x 106 µm2.    Micropores were defined as less than 1000 

µm2 and macropores were defined as larger than 1000 µm2.  While this limit was 

somewhat arbitrary, it is similar to resolution of the human eye, which is about 40 µm in 

diameter, and other studies defining micropore areas to be less than 500 µm2 (Anselmetti, 

1998, Cerepi, 2001).  In Figure 9, porosity versus micro-porosity is shown.   The amount 

of porosity associated with the micropores is between 0.002 and .012, and does not 

appear to be a function of the total porosity.  Also, the moisture condition that the 

samples were consolidated at does not have an apparent effect on the amount of porosity 

associated with micropores.  The effect of the temperature upon the sample was 

consolidated at is not clear; four of the five samples consolidated at 90°C have a 

relatively low amount of micropore porosity. The 175°C thin section sample was found 

to contain a large amount of impurities, such as anhydrite and clays, which could explain 

the higher amount of micro-porosity.   
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Figure 9: Total porosity versus micro-porosity with varying temperature and moisture conditions. 

 

The following charts in Figure 10 display the distribution of micropore areas for each 

sample.  The most frequent pore areas are the smallest bin sizes (between 15 and 75µm2), 

and almost all of the pore areas are within the range from 15 to 500 µm2
 for each of the 

samples.  Again, there is no clear indication that varying conditions have a direct 

influence on the range of micropore sizes.  Even though stress, temperature, or added 

moisture do not appear to have a straightforward effect on micro-porosity, the variability 

of the results is interesting and unexpected. It is possible there is a stable and remnant 

micro-porosity when low total porosities are reached.  
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Figure 10: Micropore area distributions measured in µm2 for each sample. 

 

Figure 11 presents porosity versus associated macro-porosity comparison.  There is a 

definite linear trend signifying the macro-porosity is dominant, and thus controls sample 

permeability.  When looking at the pore area distributions (Figure 12), there is a large 

range of macropore areas, spanning from 1000 to 550,000 µm2 and in some cases, even 

greater.  In order to display all of the data, bin sizes were not equally distributed. A 
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majority of the macopores lie between 1000 to 10,000 µm2. Sample W90-3 has the 

greatest amount of pore areas 550,000 µm2 and above, which is consistent with its large 

porosity. Within the rest of the 90°C set of samples, however, there is no indication that 

added moisture results in fewer large pore areas.  There is a slight decrease in the 

frequency of macropores in W250-2 as compared to W250-1, possibly due to W250-2 

being an unvented sample and retaining the moisture.  Comparing A250-1 and A250-2, 

with moisture added (A250-2), there is an apparent drop in the number of macopores. 

Considering consolidated samples produced at 90°C and 175°C , W90-1 had a higher 

frequency of large macropores (>150,000 µm2) compared to W175-1, even when W90-1 

had a much longer consolidation time. A similar result was found by Keller et al. (2014) 

from oedometer tests on natural crushed rock salt without water where an increase in 

compaction temperature led to a smaller amount of large pore sizes.  

 

Figure 11: Total porosity versus macro-porosity with varying temperature and moisture 
conditions. 
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Figure 12: Macropore area distributions measured in 103 µm2 for each sample. 
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4. CONCLUSIONS 

4.1. GENERAL 

Eleven laboratory consolidated granular salt samples were characterized using various 

methods to gather information of the operative micro-mechanics occurring during 

consolidation, pore properties, and pore area distributions to help understand the effects 

of changing stress, temperature, and moisture conditions.   

 

Techniques for obtaining porosity values on thin sections and sub-cores relate reasonably 

well, and suggest that the majority of the porosity within the samples are connected even 

when the final porosity is less than 0.02.   Discrepancies may be caused by the methods 

used since sub-core porosities are measurements using a porosimeter and dimensional 

values, while thin section methods are observational using optical and scanning electron 

microscopes.  

 

A possible trend of increasing specific surface area with decreasing porosity was 

observed amid high variability for porosities less than 0.05.  Since the PIA specific 

surface area relationship is based on a ratio of pore perimeter to pore area, it is reasonable 

that samples with large pore areas or porosity will yield a lower specific surface area.  

 

A decrease in permeability with decreasing porosity was observed for selected samples.  

Permeability is dependent on pore structure and porosity, so fewer void spaces is 

consistent with a more limited flow path.  The permeability values agree with published 

permeability-porosity relationships on consolidated granular rock salt. 
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The tortuosity factor was calculated from the Carman-Kozeny equivalent channel model 

using the measured permeabilities and porosities.   The tortuosity factor has a trend of 

increasing with decreased porosity. Some tortuosity values were very near or below one 

which is inconsistent with the definition of tortuosity.  However, the tortuosity factor is 

derived from a model that greatly simplifies the pore structure, and different values can 

be obtained by accounting for a variety of factors including pore non-uniformities.   

Based on the pore area analysis, samples are dominated by macropores, indicated by the 

linear trend of total porosity versus macro-porosity.  A majority of micropore areas lied 

within the range of 15 to 500 µm2, while macropores ranged from 1000 to 10,000 µm2.   

 

4.2.  ADDED MOISTURE EFFECTS 

Added moisture was found to have the biggest impact on the microstructure during 

consolidation. In microstructural observations, evidence of pressure solutioning was 

observed in samples with added moisture as well as occluded fluid pore spaces and a 

higher degree of cohesion found along grain boundaries.  This is consistent with previous 

consolidation experiments noted in Urai and Spiers, 2007, showing “wet” samples 

deformed at stresses greater than 10-20 MPa and temperatures of 100-200°C experience 

fluid assisted grain boundary migration alongside dislocation creep. Documentation of 

occluded fluid pore spaces along grain boundaries are scarce in literature, but have been 

seen in Urai et al., 1986b, on deformed Asse mine samples. Samples consolidated at 

90°C (W90-1 and W90-8) and 175°C (W175-1) without added moisture show no 
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evidence of pressure solution processes, only plastic deformation. Recrystallization was 

also seen in etched thin sections at 90°C with added moisture.  

 

Comparing porosities of 90°C consolidated samples, those with added moisture (W90-2, 

W90-4, and W90-7) do experience lower porosities than those without added moisture 

(W90-1 and W90-8); W90-3 is an exception due to only being preconsolidated. At 

250°C, WIPP samples have similar porosities regardless of vented or unvented 

conditions. However, the Avery Island sample with added moisture does have about a 

0.01 to 0.02 drop in porosity compared to no added moisture at similar conditions.  

Overall, the addition of moisture had no effect on specific surface area of WIPP samples, 

but within Avery Island, the sample with added moisture produced a higher specific 

surface area. From the samples tested with the permeameter, samples with added 

moisture, W90-4 and W90-7, had lower permeabilities and tortuosity factors, where 

W90-7 experienced even lower values that W90-4 due to a longer test duration.  There 

was little effect on micro-porosity with different consolidation conditions, but there 

appeared to be a lower frequency of macropores in 250°C samples that retained or had 

added moisture compared to other similar samples. 

 

4.3.  TEMPERATURE EFFECTS 

The 250°C samples did have a higher degree of cohesion along grain boundaries and 

lower porosities overall. Comparing W90-1, W175-1, and W250-1, which had the same 

stress and moisture conditions, the higher temperature samples experienced a lower 

porosity, higher specific surface area, higher micro-porosity and frequency of 
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micropores, even though W90-1 was subject to a much longer consolidation time. 

Recrystallization was also observed prominently throughout sample grains of both WIPP 

and Avery Island salt consolidated at 250°C.  When looking at the WIPP samples, the 

higher consolidation temperatures show a larger frequency in the lower end of the 

macropore range from 1000 to 2500 µm2.   

 

4.4.  STRESS EFFECTS 

The one sample consolidated at a higher stress state was W90-8 at 38 MPa, which was 

directly compared to W90-1. Considering both at the same temperature and moisture 

conditions, W90-1 had a long test duration, yet a higher stress state in W90-8 resulted in 

a lower porosity. W90-8 also had a higher specific surface area and a lower frequency of 

large macropores.  There were no apparent differences in sample morphology within the 

microstructural observations or in micro and macro-porosity. Not enough information 

was gathered to determine the impact of stress on permeability and tortuosity.  
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APPENDIX A: EQUIPMENT AND EXPERIMENTAL METHODS 
 
A.1. EQUIPMENT 

The JEOL 5800LV scanning electron microscope, Figure A-1, uses a beam of 
electrons to scan a sample in order to create images of the surface at high 
magnification up to 300,000x.  It can also be used to determine the composition of a 
sample based off the signals produced by atoms within the sample and the electrons.  
The JEOL is equipped with secondary and backscattered electron imaging detectors 
as well as a cathodoluminscence (CL) imaging detector.  It is a low pressure 
microscope that operates at high and low vacuum.  The instrument uses the Oxford 
Isis 300 analytical system, which includes an energy dispersive spectroscopy (EDS) 
detector, to acquire sample images and composition.    

 
Figure A-1: JEOL 5800LV scanning electron microscope. 

A FEI Nova 200 Nanolab, Figure A-2, is an instrument with a dual beam system of a 
focused ion beam column and SEM column.  The SEM column is equipped with a 
tungsten filament for imaging in low or high vacuum levels.  The detector has a 
resolution of 3.5 nm operating at 30 kV at high vacuum and less than 15 nm at 3 kV 
when operating in low vacuum.  The instrument is also equipped with INCA Synergy 
350 with HKL Premium EBSD System, which allows elemental analysis of samples 
as well as the capability of generating phase maps from elemental maps and Cameo 
data.  Samples up to 12 inches in diameter can then be mapped.  A HKL Premium 
Electron Backscatter Detector can be used within the machine for crystallographic 
determination to create orientation maps of microstructures, generate combined 
orientation and elemental maps, and generate pole figures.  
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Figure A-2: FEI Nova 200 Nanolab SEM. 

 
The Tescan Vega3 LM SEM (Figure A-3) is equipped with a conventional tungsten 
heated cathode that can be used in high vacuum or low vacuum.  Resolution down to at 
least 3 nm, an accelerating voltage range from 0.2 to 30 kV, and continuous 
magnification from 2.5x to 1,000,000x produces excellent images for observational work. 
The large analytical chamber with a 5-axis motorized stage permits easy placement of 
multiply sample types. The EDX and EBSD enabled ports allow for elemental analysis 
spectrums and back scattering detection.  
 

 
Figure A-3: Tescan Vega3 LM SEM. 

 
In order to prepare non-conducting or poorly conducting samples for observation in a 
SEM instrument, a sputter coater must be used. The EmiTech KX950 sputter coater, 
Figure A-4, allows for samples to be thinly coated by carbon or gold-palladium to 
increase the electrical conduction.  The palladium acts as a physical barrier to the gold, 
which attempts to conglomerate into large islands and restrict ultimate resolution 
performance.  It is equipped with a turbo pump evaporator for complete automatic control 
during evaporation of the chamber to low pressures while having a dry gas inlet to 
improve deposition of the coating.  This sputter coater is also used with a K150X film 
thickness monitor that measures the thickness of the coating that has been deposited on a 
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crystal within the chamber.  It allows for accurate measurements in case some samples 
have more delicate features than others, such as an etch, and too thick of a film will 
diminish these features.   

 

 
Figure A-4: EmiTech KX950 sputter coater with K150X film thickness monitor. 

Using the sputter coater, samples could be coated in carbon or gold-palladium to view 
within the SEM.  A carbon rod with a 3mm sharpened spigot shaped head is ignited and 
evaporated producing a 25nm thick coat for a 5 second pulse. Carbon coating is generally 
used for the unetched, consolidated mass samples since greater detail is not as desirable. 
However, for samples that have been etched, gold-palladium is used to produce high-
resolution coating.  A consistent problem when coating has been figuring out the most 
favorable thickness.  Too thick of a coating will cover the subgrain features produced by 
the etch, while too thin will not highlight them enough to be observable.  From a series of 
tests with samples each coated different thicknesses, 9.5nm produced the best results to 
view the etched subgrain features.   
 
A Leitz Ortholux II optical microscope, Figure A-5, uses combined transmitted and 
incident polarized light with a five objective nosepiece to examine samples.  The 
microscope is equipped with a Leica camera and Lieca Application Suite software to 
capture images of any sample.   

 
Figure A-5: Leitz Ortholux II optical microscope. 
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After salt is consolidated into lead jacketed cylinders, the samples needed to be cut in 
order to make thin-sections, obtain aggregated samples, and perform thermal conductivity 
tests.  A diamond wire saw, shown in Figure A-6, is the best type of saw to cut rock salt 
due to its semi-fragile nature.  The sample is first placed on the platform, making sure it 
is stable by using weights or clamps, so it does not move while cutting. The wire arm is 
then lowered just above the sample and then the pump is turned on for the rotating wheel. 
The wheel changes rotating directions due to magnetic sensors, which allows the wire to 
be pulled back and forth. By placing a small amount of weight of about 5 grams on the 
wire arm, the arm lowers slowly down through the sample.  Sensors located on the sides 
of the arm control how low the wire goes and effectively shuts off the pump once the arm 
is close.  
 

   
Figure A-6: Diamond wire saw with ventilation, pulley system, adjustable table, wheel, pump 

and pump controller. 

A Buehler IsoMet low speed saw, shown in Figure A-7, is used for making precision cut 
thin sections with a diamond tipped saw. Once the surface of an impregnated sample is 
glued to a glass slide, the slide is suctioned into a vacuum chuck holder with the help of a 
small amount of vacuum grease to create a tight seal. The holder is then screwed onto the 
arm above the blade and its position adjusted by a micrometer.  The micrometer allows 
for manual determination of thickness for each cut. Weights on the arm control the 
loading of the specimen, which governs the speed of the cut. For salt specimens, 
isopropanol is used as the cutting liquid and is poured into a reservoir below the blade, 
refilling regularly due to evaporation.      



www.manaraa.com

 48 

 
Figure A-7: Buehler IsoMet low speed saw. 

 
Figure A-8 shows a Buehler Ecomet III polisher and grinder, which is used to polish thin 
sections after cutting and also to create smooth, even surfaces for porosity samples.  
Abrasive, circular paper, ranging in grit size from 400 to 1200, is adhered to a rotating 
wheel. The paper is wetted with isopropanol and samples are held on the wheel with 
minimal pressure until a smooth surface is acquired. 

 
Figure A-8: Buehler Ecomet III polisher and grinder. 

 

A.2. SAMPLE PREPARATION 

A.2.1 IMPREGNATION AND THIN SECTION SLICING 

Typically, the solid state of the sample is locked in place by impregnation with low 
viscosity epoxy. Samples are shaped to a convenient size for thin- or thick-section 
preparation using the slow-speed, low damage diamond wire saw. There are many types 
of epoxy that can be used. Two low viscosity epoxies were chosen and used for 
impregnation. A two-component epoxy, stained blue, was used in commercially 
manufactured thin sections (RF 1366 commercially available epoxy from Resin 
Formulators). The Spurr Low-Viscosity Embedding Kit, available from Sigma-Aldrich®, 
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was also used and doped with rhodamine dye for color contrast. The sub-sample is placed 
in a convenient disposable container (a paper cup, plastic bag, or aluminum foil, for 
example). The sample is completely immersed in epoxy and placed in a bell jar, which is 
put under vacuum and pressurized until epoxy just starts to boil. After the system has 
been evacuated, the vacuum is removed slowly by venting and atmospheric pressure 
helps force epoxy into the evacuated voids of the specimen. This process is repeated 3-4 
times to ensure that the specimen has been fully impregnated. The epoxy is then allowed 
to cure. Spurr epoxy required to be cured in an oven at 50°C to 70°C.  After curing, 
excess epoxy is removed and the side for thin sectioning is grinded down with the lap 
plate to create a smooth, flat surface.  After smoothing, a glass slide is glued on with 5-
minute Devcon epoxy. The Isomet saw and sample holders described in the equipment 
section is then used to accurately cut thin sections.  Mineral oil and isopropanol were 
used as the cutting fluid.  
 

A.2.2 POLISHING  

To improve imaging on the stereo-dynascopic or optical microscopes, uneven surfaces 
after cutting need to be smoothed by polishing. This is done using a clean, flat surface 
with a sheet of sandpaper and isopropanol, or the Buehler lap plate with circular adhesive 
grit. For salt, silicon carbide grit sizes ranging from 120 to 1200 provided efficient 
material removal and polishing. For thin sections specifically, a series of higher grit sizes 
(400, 600, 800, and 1200) was used for optical microscopic observations in reflected 
light. Isopropanol is used as the wetting agent and a figure-eight motion creates a nice, 
even finish.  
 
A.3. EXPERIMENTAL METHODS 

A.3.1. CLEAVING AND ETCHING 

Etching is a technique that allows for heavily deformed grains under multiple 
mechanisms to be highlighted.  Individual cleavage chips are etched to highlight the 
substructure in the crystal lattice. Pits etch preferentially because atoms around 
dislocations possess strain energy and are more readily taken into solution by the etchant. 
Cleaving a sample involves using a small hammer and chisel on a single salt grain along 
the Miller Indices {100} plane.  This produces a roughly planar, flat surfaced chip that is 
about 0.1-0.2 cm thick and can then be etched.  A solution of methanol saturated with 
PbCl2 is used as the etchant and stopped with butanol. Etching requires practice. 
Typically, the single chip is held with a tweezers and agitated in the PbCl2 solution for 3 
to 4 seconds and stopped immediately by transfer to butanol. Excess liquid can be drawn 
off by dropping the chip on a dry Kimwipe®.  Immediate examination on an optical scope 
allows evaluation of how well etching was done. Crisp etches with sharp contrast and 
resolution allow for better evaluation of the substructure. After cleavage chips are 
successfully etched, they are mounted with carbon tape and coated in gold-palladium for 
observation under the SEM where a higher magnification and resolution of the etched 
surface can be seen. 
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A.3.2. POINT COUNTING 

A thick-thin or thin section is placed on a mechanical slide stage, shown in Figure A-9, 
on an optical microscope.  This slide stage moves in the horizontal direction 40 mm and 
20 mm in the vertical direction, where one rotation between nob notches is equal to 1mm.  
The sample is moved within the stage in a grid-like pattern with an equal distance in the 
vertical and horizontal directions.  As the sample is moved, it is determined whether the 
eyepiece crosshairs are located on void space or solid space.  This is what is known as a 
count.  Typically, about 300 to 500 counts must be made per run to obtain a more 
accurate measurement.  The direction of movement must also me changed after each run 
in order to get a better representation of the entire sample.  

 
Figure A-9: Leitz mechanical slide stage for optical microscope. 
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APPENDIX B: FLUID INCLUSION TRANSFORMATION IN NATIVE SALT 
CLEAVAGE CHIPS 
 
B.1. PURPOSE 

The purpose of this experiment was to perform incremental heating on cleavage 
chips for two types of natural salt, WIPP (bedded) and Avery Island (domal). 
Observations made on an optical microscope in reflected and transmitted light were 
implemented to document changes in fluid inclusions at heating increments.  Any mass 
loss associated with heating was also recorded after various heating periods, which 
relates to the evaporation of any free fluids.    
 
B.2. EXPERIMENTAL PROCEDURE 

Two cleavage chips from native mine-run WIPP salt and two from Avery Island 
salt grains were produced for this experiment by means of a chisel and hammer.  One of 
the WIPP samples was cleaved from a highly mineralized grain in order to see the effects 
associated with impurities.  The other WIPP sample was from a very pure grain.  All 
samples were looked at under an optical microscope prior to heating in order to find 
interesting fluid inclusion locations and acquire baseline photomicrographs.  Prevalent 
fluid inclusion areas were of specific interest in this study.  These areas were mapped so 
they could be located after each temperature increment to associate any changes that 
occurred after heating and cooling.  

The tare weight of four aluminum weigh boats was obtained and were used to 
hold each sample during heating. The total weight of the cleaved sample and weigh boat 
was also recorded, so the individual cleavage chip weight could be found.  Using a forced 
air convective oven, samples were heated beginning at 100°C for at least 20 hours. The 
temperature was increased by increments of 50°C up to 250°C.  Microscopic 
observations were made at the designated areas of interest along with sample weigh 
measurements after every incremental heating period. They were allowed to cool for 
approximately 5 minutes prior to weighing to ensure air currents associated with 
temperature differences did not distort mass results. After the maximum temperature of 
250°C was reached, a reverse heating procedure was done by lowering the temperature in 
50°C increments, again holding for at least 20 hours.  This was done in order to see if any 
affects observed were permanent or reversible. Lastly, the samples were allowed to cool 
at ambient temperature for three days until final photomicrographs and weights were 
acquired. 
 
B.3. EQUIPMENT USED 

• Small hammer 
• Small chisel 
• Aluminum weigh boats 
• Tweezers 
• Scale 
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o Mettler Toledo XS205 Dual Range balance with readability measurements 
to 0.1 mg to identify small amounts of weight changes. 

• Oven 
o A medium sized, 120V Fisher Scientific Isotemp Premium Lab Oven with 

forced convective air and range of 50°C to 275°C in increments of 1°C.  
• Microscope 

o A Leitz Ortholux II optical microscope that uses combined transmitted and 
incident polarized light with a five objective nosepiece to examine 
samples.  The microscope is also equipped with a Leica camera and Lieca 
Application Suite software to capture sample images.   

 
B.4. RESULTS 

B.4.1. WEIGHT CHANGE 

As the samples were incrementally heated, weights were recorded in order to 
determine the total percent weight change after the experiment was completed.  The 
graphs below in Figures B-1 to B-4 provide the results for the weight change for each of 
the samples as the temperature was raised and then lowered.  
 

 
Figure B-1: Mass as a function of temperature for Avery Island sample 1 showing total weight 

loss. 
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Figure B-2: Mass as a function of temperature for Avery Island sample 2 showing total weight 

loss. 

 

 
Figure B-3: Mass as a function of temperature for WIPP sample 1 showing total weight loss. 
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Figure B-4: Mass as a function of temperature for WIPP sample 2 showing total weight loss. 

 
B.4.2. PHOTOMICROGRAPHS 

The following photomicrographs (Tables B1-B7) represent locations in samples that 
experienced the most signification amount of change with respect to heating and cooling. 
Table 7 shows migrating fluid inclusions in the highly mineralized cleavage chip.  
 

B.4.2.1 AVERY ISLAND SAMPLES 
 
Table B-1: Photomicrographs for Avery Island sample 1 location 1 showing effects of heating to 

fluid inclusions. 

Sample 1 Location 1 

  
a. Before heating b. After 100°C heat 
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c. After 150°C heat d. After 200°C heat 

  
e. After 250°C heat f. After 200°C decrease heat 

  
g. After 150°C decrease heat h. After 100°C decrease heat 
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i. After 50°C decrease heat j. After 3 day cooling at ambient 

 
 
Table B-2: Photomicrographs for Avery Island sample 1 location 4 showing effects of heating to 

fluid inclusions. 

Sample 1 Location 4 

  
a. Before heating b. After 100°C heat 

  
c. After 150°C heat d. After 200°C heat 
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e. After 250°C heat f. After 200°C decrease heat 

 
Table B-3: Photomicrographs for Avery Island sample 2 location 1 showing effects of heating to 

fluid inclusions. 

Sample 2 Location 1 

  
a. Before heating b. After 100°C heat 

  
c. After 150°C heat d. After 200°C heat 
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e. After 250°C heat f. After 200°C decrease heat 

  
g. After 150°C decrease heat h. After 100°C decrease heat 

  
i. After 50°C decrease heat j. After 3 day cooling at ambient 
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B.4.4.2. WIPP SAMPLES 
 

Table B-4: Photomicrographs for WIPP sample 1 location 3 showing effects of heating to fluid 
inclusions. 

Sample 1 Location 3 

  
a. Before heating b. After 100°C heat 

  
c. After 150°C heat d. After 200°C heat 

  
e. After 250°C heat f. After 200°C decrease heat 
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g. After 150°C decrease heat h. After 100°C decrease heat 

  
i. After 50°C decrease heat j. After 3 day cooling at ambient 
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Table B-5: Photomicrographs for WIPP sample 1 location 4 showing effects of heating to fluid 
inclusions. 

Sample 1 Location 4 

  
a. Before heating b. After 100°C heat 

  
c. After 150°C heat d. After 200°C heat 

  
e. After 250°C heat f. After 200°C decrease heat 
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g. After 150°C decrease heat h. After 100°C decrease heat 

  
i. After 50°C decrease heat j. After 3 day cooling at ambient 

 
Table B-6: Photomicrographs for WIPP sample 2 location 3 showing effects of heating to fluid 

inclusions. 

Sample 2 Location 3 

  
a. Before heating b. After 100°C heat 
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c. After 150°C heat d. After 200°C heat 

  
e. After 250°C heat f. After 200°C decrease heat 

  
g. After 150°C decrease heat h. After 100°C decrease heat 
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i. After 50°C decrease heat j. After 3 day cooling at ambient 

 
 

Table B-7: Photomicrographs for WIPP sample 2 at various locations near impurities showing 
effects of heating to fluid inclusions. 

Sample 2: Migrating Fluid Inclusions After Heating 
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B.5. DISCUSSION 

Each sample heated had at slight amount of weight change, especially the sample with a 
large quantity of impurities or minerals (WIPP 2, Figure B-4).  The minerals attain more 
accessible water, which allows for higher evaporation and thus a larger weight change.  
Due to the small mass of each cleavage chip, a higher error is associated with the weight 
measurement.   Higher weights may be due to dust or small particles within the 
convective oven that can gather in the weigh boats that are open for evaporation. As 
cleavage chips are transferred to the microscope stage for observation, small broken 
fragments may occur due to the brittle behavior of rock salt, which could also result in 
mass errors. These reasons could explain the inconsistent jumps in the mass loss graphs 
(Figures B1-B4). 
 
From this experiment, it is clear that heat affects fluid inclusions in salt crystals.   
Heating the cleavage chips creates gas bubbles within many of the fluid inclusions, which 
did not disappear upon decreasing heat or cooling.  It is predicted that this gas bubble 
forms due to the increase in temperature, which simultaneously produces a higher vapor 
pressure within the inclusion.  As can be seen in tables B-4 and B-5, a rising temperature 
continues to make the gas bubble stretch that causes deformation or shape altering of the 
fluid inclusions.  A very interesting observation was made in the cleavage chip with 
impurities, shown in photomicrographs from table B-7.  A highly mineralized area, which 
has a higher heat capacity than pure salt, is to the right of each photomicrograph.  The 
large fluid inclusions close to this area appear to have migrated away from this area.  It is 
unclear as to why exactly this happens since inclusions generally move towards the heat 
source.  More experiments need to be conducted on impure cleavage chips to see if 
reproducible observation can be made. It may also be important to define the type of 
mineral associated with each chip to determine the minerals’ thermal storage properties.  
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APPENDIX C: OBSERVATIONAL STUDIES FROM BAMBUS II EXPERIMENT 
 
C.1. BACKGROUND 

Additional samples from the Backfilling and Sealing of Underground Repositories for 
Radioactive Waste in Salt (BAMBUS) field experiment (Bechthold et al. 2004) were 
microscopically examined by the same experimental techniques described.  The 
BAMBUS experiment was an in situ investigation within the Asse salt mine in Germany. 
While the field experiment involved multiple research initiatives the samples obtained 
were from the Thermal Simulation of Drift Emplacement (TSDE) portion. TSDE 
comprised of large electric heaters placed in mined drifts, surrounded by salt backfill 
material, and heated to about 100°C from September 1990 to February 1999. The 
BAMBUS I project examined the placed backfill just after the heaters were turned off.  
The crushed salt backfill associated with the BAMBUS forensic work has now 
experienced another decade of consolidation in the underground setting. Collaborators in 
international salt repository investigations agreed that another series of characterization 
studies on the BAMBUS reconsolidated salt would help elucidate large-scale, long-term 
consolidation processes.  
 
C.2. MICROSTRUCTURAL OBSERVATIONS 

Fragments can be obtained several ways. Part of observational studies of reconsolidated 
salt involves use of a “fresh face” that has not been cut or polished. Usually fragments from 
cut ends can simply be broken by flexure. This exposes a clean surface, which exhibits 
diagnostics of sample cohesiveness, grain boundary characteristics, and other evidence of 
microprocesses. The SEM is convenient for these observations because of its focal length. 
Fragments provide a sense of 3-D imaging, particularly useful for examining grain 
boundaries. 
Scanning electron microscopy of fragments allows close examination of grain-to-grain 
interaction, a general 3-dimensional appreciation of the void space, and characteristics of 
consolidation processes. Eight images are shown in Figure C-1 and labeled A-H. There are 
four micrographs for each borehole. Five images are shot at 350X magnification (~250 µm 
across the field of view) and the remaining three are at higher magnification to examine a 
few fine features of interest. A scale bar appears on each image.  
Four representative images are provided from each borehole. We did not attempt to provide 
equal or statistical sampling, but rather to capture representative physical processes.  
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BH2-2.5m-B1_01                               (A) BH2-HD-A_02                                    (B) 

  
BH2-HD-A_04                                   (C) BH2-HD-A_03                                    (D) 
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BH1-1.82m-A1_1                               (E) BH1-2.77m-A1_2                              (F) 

  
BH1-2.77m-A1_3                              (G) BH1-2.77m-A1_4                              (H) 

Figure C-1: Scanning electron images of BAMBUS salt. 

 
A, B, and C are shot at 350X magnification and illustrate angular voids preserved between 
grain contacts. Abrasion roughens grain surfaces and is seen on most grain boundaries. The 
compacted mass has established relatively tight grain boundaries created by translational 
sliding, as exhibited in micrograph B. Local crystal plasticity can be seen in micrograph C. 
No suturing by fluid assisted processes is evident at 350X; however, micrograph D at 
2500X captures a small-scale cohesion mass of fine grains within a boundary looking 
approximately normal to the plane.  
Micrograph E is an example of a fragile fragment face with notably higher porosity and 
loose aggregate. Micrograph F is comparable to A in terms of porosity and void 
architecture, but also captures images of plasticity and incipient fracture at the grain contact 
near the center of the frame. This image is enhanced in micrograph G, where fracture is 
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developing in the left grain and plastic ridges are piling up on the right grains. Micrograph 
H illustrates tight compaction with gouge along the upper boundary of the elongate grain 
in the center of the field of view. Again, there is minimal evidence for fluid-aided grain-
boundary processes. The level of consolidation by mostly brittle translational compaction 
varies considerably as will be reflected subsequently in porosity measurements. 
 
C.3. POINT COUNTING MEASUREMENTS 

We made a series of optical slides referred to as thick-thin sections. This oxymoronic 
nomenclature differentiates salt sections prepared at a thickness of 3 mm from typical rock 
petrographic sections that are 30 µm thick. These sections all derive from the small (bis 
end) piece from borehole 2 identified as BH2-HD-A. The thick-thin sections are identified 
in table C-1. An optical image of one of these thick-thin sections is shown in Figure C-2. 
Slides such as shown in FigureC-2 were used to systematically point count solid grains and 
void space. Porosities measured are in general agreement and compare globally to values 
determined by other methods. As a matter of accuracy and data quality, we performed 
independent measurements on the same sections and the results are summarized in table 
C-1. The results combine natural variability of porosity and interpretations of the operator. 
When independent operators counted the same slides (BH-D3 and BH-D4), average 
porosity was within 2%. It might be possible to reduce variance by substantially more point 
counting, but such measures have not been undertaken.  

 
Figure C-2: Typical thick-thin section of BAMBUS reconsolidated salt (10x magnification). 

 
Table C-1: Comparison of porosity determined by point counting. 

Thin Section Identification Voids/Hansen % Voids/Mills % 
BH-D2 20.3  
BH-D3 25.0 30.7 
BH-D4 28.3 26.7 
BH-D5  28.3 
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APPENDIX D: OBSERVATIONAL STUDIES FROM PREVIOUS SANDIA 
NATIONAL LABS GRANULAR SALT CONSOLIDATION EXPERIMENTS 
 
D.1. BACKGROUND 

The Geomechanics group at Sandia National Labs conducted similar consolidation tests 
on granular WIPP salt.  A complete description, test matrix, and results can be found in 
SAND2012-9893P: Coupled Thermal-Hydrological-Mechanical Processes in Salt: Hot 
Granular Salt Consolidation, Constitutive Model, and Micromechanics by Hansen et al. 
Two samples from the matrix (FCT-CS-CR-250-01 and FCT-CS-HQ-ALL-01) were used 
to practice techniques described and observe deformation mechanisms. FCT-CS-CR-250-
01 was consolidated to 250°C at an isostatic confining pressure of 2.5MPa to a 
normalized fractional density of 0.86.  FCT-CS-HQ-ALL-01 was also consolidated to 
250°C, but at a much higher isostatic confining pressure of 20MPa to a normalized 
fractional density of 0.97.  Samples used for observation include impregnated thin 
sections, cleavage chips, and freshly broken aggregate grains.  
 
D.2. MICROSTRUCTURAL OBSERVATIONS 

In Figure D-1, photomicrographs of FCT-CS-CR-250-01 are displayed.  
 

  
a.  b. 

  
c. d. 
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e. f. 

Figure D-1: a. Cleavage chip under optical microscope showing a non-uniform array of fluid 
inclusions with variable sizes (10x magnification). b. Etched cleavage chip under optical 

microscope revealing elongated polygon substructure caused by large strain (10x magnification). 
c. Deformation of two cubic grains in an impregnated thin section under the optical microscope 

(20x magnification). d. Display of single grain under high deformation with emanating fluid 
inclusions (5x magnification). e. Etched cleavage chip under SEM showing low free dislocation 

densities with some recovered grains (2000x magnification). f. Grain in steady state due to equant 
polygons with very low free dislocation densities (500x magnification).  

 
Photomicrographs of sample FCT-CS-HQ-ALL-01 are shown in Figure D-2. 
 

  
a. b. 
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c. d. 

  
e. f. 

  
g. h. 

Figure D-2: a. Cleavage chip showing more condensed and non-uniform array of variably sized 
fluid inclusions under optical microscope (10x magnification).  b. Etched cleavage chip under 
optical microscope revealing elongated, smaller polygon substructure due to large strain (20x 
magnification). c. Small, middle grain undergoing deformation in thin section under optical 

microscope (5x magnification). d. Thin section showing grain under high deformation assisted by 
fluid inclusions (5x magnification). e. Broken aggregate under SEM revealing tight grain 
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boundaries with evident glide deformation (3800x magnification). f. Tightly sutured crystal 
deformation with plasticity by glide on broken aggregate under SEM (1600x magnification). g. 

Edge of cleavage chip under SEM displaying tight sutured grain boundary with upper grain under 
heavy deformation where glide planes are curved, and lower grain having perfect cubic cleavage 

on three faces (499x magnification). h. Smaller subgrain structure with lower free dislocation 
densities on etched cleavage chip under SEM (2500x magnification). 

 
D.3. DISCUSSION 

Between the two samples, observational results show that at different consolidating 
pressure affect the subgrain structure. The higher fractional density sample, FCT-CS-HQ-
ALL-01, had much smaller subgrains and lower free dislocation densities when compared 
to the lower fractional density sample. There was also a larger degree of fluid-aided 
process occurring at grain boundaries. These results are consistent with previous 
researchers.  Remarkably, the bedded granular salt used in these experiments continues to 
vent moisture during the consolidation. Evidently, fluid inclusion migration and hydrous 
mineralogy are sufficient to promote fluid aided processes at grain boundaries. 
Substructures mark crystal plastic processes as well as recovery. 
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